Skip to main content
Skip to navigation
MU Logo University of Missouri

Mizzou Wire

Molecule master

Fred Hawthorne's uncommon research takes on common cancers

Bookmark and Share
  • Story by Nancy Moen
  • Photos by Shane Epping
  • Published: Aug. 11, 2011
Fred Hawthorn

M. Frederick Hawthorne, director of the International Institute of Nano and Molecular Medicine at Mizzou, is beginning to conduct clinical trials of boron neutron capture therapy, a procedure he and his research team believe will selectively shrink malignant tumors and improve survival rates among patients with the most common types of cancer. Both Hawthorne and his wife are cancer survivors.


Cancer-survivor professor M. Frederick Hawthorne has a heightened personal interest in the preclinical small-animal trials his research team is conducting on cancerous tumors. Hawthorne supported his wife, Diana, as she successfully battled breast cancer in 1977.

Then, in 2008, he too experienced the trauma of surgery, chemotherapy and radiation for treatment of oral cancer that took half of his tongue.

Now Hawthorne and his team will conduct clinical trials of a procedure called boron neutron capture therapy (BNCT) that they believe will irradiate and shrink tumors more selectively than present treatments and without affecting healthy tissue.

“This therapy should improve the cancer survival rate. Head and neck, prostate and breast cancers may be the most treatable,” Hawthorne says. He expects to see results within weeks. 

Testing at the University of Missouri Research Reactor (MURR) and MU’s International Institute of Nano and Molecular Medicine will begin in early September and continue for about two years.

Targeting tumors

In the trials, Hawthorne and team will follow the health of mice that have cancerous murine breast tumors induced by grafted tumor cells.  

Researchers will anesthetize the mice and inject each animal with tumor-targeting boron compounds that travel through the blood to bind with tumors and provide targets in diseased cells for neutrons. Hawthorne expects his six experimental boron compounds to more effectively reach tumors than previously tested compounds.

Researchers then expose the mice to neutron radiation for 20 minutes, creating a reaction with the boron that Hawthorne describes as a “little nuclear explosion,” which should kill the cancer cells.

“After the mice wake up, we will observe them for weeks and measure the size of their tumors. The mice should all survive the compound and the radiation, and the tumors should shrink,” Hawthorne says.

As researchers finish testing the mice, they will begin a two-year clinical trial of the same compounds on larger animals. Clinical trials on human volunteers could begin in about five years.

At a later date, Hawthorne’s group also plans to test the procedure as a possible treatment for rheumatoid arthritis. In a similar fashion to the cancer research, injections of boron compounds will mark the synovium — the inflamed tumor-like mass — before irradiation. 

The University of Missouri holds Hawthorne’s patents and patent applications on the boron target compounds, which are produced in his laboratories. The team will continue to make new drugs with improved performance.

In a related study, a group of researchers with the Argentine Atomic Energy Commission in Buenos Aires is using Hawthorne’s boron compounds in trials on hamsters with head and neck tumors. Those researchers are sharing data with the MU group.

In his element

Jill Lange delivers a vanilla birthday cake to Fred Hawthorne

Jill Lange, an MU student and banquet server at the Reynolds Alumni Center, delivers a vanilla birthday cake to Fred Hawthorne in 2009 on his 81st birthday. The celebration also marked Hawthorne's receipt of the 2009 Priestley Medal.

Hawthorne is credited with the rare achievement of creating a field of research and excelling in it. When he began his career in the chemistry of boron about 50 years ago, there was little existing information about the chemistry of the element.

Hawthorne envisioned boron as the potential basis of new products such as pharmaceuticals and nanomaterials. He took on the goal of using boron combinations — boranes and carboranes — to cure common cancers through targeted anti-cancer drug delivery as well as boron neutron capture therapy.

Positive results in Hawthorne’s early tests years ago at the University of California, Los Angeles indicated that mice showed low toxicity to the compounds, but without access to a neutron source, he was unable to conduct clinical trials with irradiation to activate the boron atoms. 

That changed in 2006 when Hawthorne retired from a successful academic career at UCLA and moved his research laboratory to Mizzou, lured back to Missouri, his childhood home, by a full package of resources to help complete his life’s work: a medical school, a veterinary college and the nation’s largest academic research reactor with a neutron beam line dedicated to BNCT. Sealing the deal was the promise of an International Institute of Nano and Molecular Medicine, which Hawthorne founded and now directs.

“Nothing beats this. This is the only research site in the United States with that combination of research tools,” he says. 

When established researchers move their labs, they don’t travel unencumbered or alone. Hawthorne’s move required three 18-wheel moving vans filled with files, chemicals, thousands of pieces of glassware and instruments of all varieties.

Joining Hawthorne in the relocation were UCLA research group faculty members Mark Lee, PhD, and Satesh Jalisatgi, PhD, as well as several doctoral students who were working with him.

At MU, Hawthorne watched the International Institute of Nano and Molecular Medicine take shape in a former parking lot on Research Park Drive, just across the street from the reactor. Reflecting the importance of the research, the building was designed in five days and built in 18 months.

Early indicators

Even as a youngster growing up in Kansas and Missouri, Hawthorne believed chemistry was his future. He set up his first lab at 12 and began making new polymers. He wrote his first paper at 16, which expanded to his current 550 papers. He has 35 patents and pending patents. 

Hawthorne’s schooling didn’t exactly meet the norm. Because his father’s civil engineering job required frequent moves, he attended 20 different schools before high school.

At 16, Hawthorne left Rolla High School to study chemical engineering after passing entrance exams at Missouri School of Mines & Metallurgy in Rolla. He transferred to Pomona College in Claremont, Calif., for a bachelor’s degree in chemistry and completed graduate studies with a 1953 doctorate at UCLA, mentored by future Nobel Laureate Donald Cram.

Before moving into academic research, Hawthorne worked on rocket propellants for Rohm and Haas Company in Huntsville, Ala., and later in Philadelphia, Pa. It was at Rohm and Haas that he found his research niche – borane-cluster chemistry. 

The major honors for Hawthorne’s lifetime work reflect his status in the scientific community. In 1973 at age 44, he earned a coveted membership in the U.S. National Academy of Sciences. For 31 years, from 1969 to 2000, he served as editor-in-chief of the journal Inorganic Chemistry. And he won the 2009 American Chemical Society Priestley Medal — the society’s highest award — for pioneering work in boron chemistry.

There are many other awards he considers favorites as well, including a 1994 Willard Gibbs Medal from the Chicago section of ACS; a 1988 ACS Award for Distinguished Service in the Advancement of Inorganic Chemistry; and a $200,000 King Faisal International Prize for Science (2003 co-winner) for achievements having a profound effect on cancer therapy.

Now in his eighth decade, after fighting cancer professionally and personally, and lauded with honors any chemist would covet, Hawthorne continues to search for what he considers the career-defining achievement: a way to combat common cancers.

Read more in:  Science & TechnologyEducationOn CampusHealth & Medicine

Reader feedback

Let Mizzou Wire know what you think

E-mail the editor at MizzouWire@missouri.edu with your comments or questions. Note: If published, feedback may be edited for length, style and clarity.

Published by MU Web Communications, 265 McReynolds Hall, Columbia, MO 65211 | Phone: 573-884-8075 | Fax: 573-884-8074 | MizzouWire@missouri.edu

Copyright © — Curators of the University of Missouri. All rights reserved. DMCA and other copyright information.

An equal opportunity/affirmative action institution.

Last updated: Feb. 22, 2012